Joseph VallinoSenior Scientist, MBL |
|
My research emphasis concerns whole ecosystem chemistry associated with biological structure synthesis and energy utilization that underlies the development of living systems. Since the majority of metabolic diversity lies almost entirely within microorganisms, my investigations currently target microbial systems, which have the added benefit of fast characteristic timescales that can be studied in the laboratory. The question I am most concerned with is what governs the expression of metabolic function (such as photosynthesis, methanogenesis, nitrogen fixation, etc) that is orchestrated by the entire microbial consortium? Are the rates of ecosystem metabolic reactions governed by just happenstance depending on which organisms are present, or is the overall chemistry of the system determined by fundamental principles? Current theories in non-equilibrium thermodynamics support the conjecture that systems organize to maximize entropy production (MEP). I am currently exploring whether MEP can be used to describe microbial biogeochemistry using theoretical models tested against laboratory microbial microcosm experiments.
While the microcosm experiments are useful for testing new theories, such as MEP, ultimately, knowledge obtained from laboratory-based research is used to develop more robust applied biogeochemistry models. The biogeochemistry models are coupled with 1D, 2D and 3D hydrodynamic models to describe how ecosystems utilize and process environmental resources. I use data assimilation techniques to calibrate and test these large-scale models against observations and experiments from field-based research projects. The Plum Island Ecosystems Long Term Ecological Research Program provides an excellent means to test new ideas and models derived from them.
Poetic description: Free energy spawns the creation of functional information that hastens free energy’s destruction
Office Phone: (508)
289-7648 MBL Operator: (508) 548-3705 FAX: (508) 457-1548 email: jvallino@mbl.edu GitHub: maxEntropyProd ORCID: 0000-0002-4184-4512 Google Scholar gate io mail: Marine Biological Laboratory, 7 MBL St., Woods Hole, MA 02543 Office: 330 CV Starr Environmental Science Bldg. Follow @MEPjoe |
|